
Simulation with gem5
RISC-V: 1-DAY COURSE FROM THEORY TO INDUSTRY

Speaker: Adrià Armejach (adria.armejach@upc.edu)
Special thanks to Nitish Arya

1

Logistics

2

https://gitlab.bsc.es/aarmejac/gem5-handson

Repository

3

● Link to the repository at the bottom of each slide
● Helper repository with relevant information:

○ PDF with the slides
○ README file with all the commands we will be using during the hands-on later

■ Useful to copy&paste
○ Helper script(s)

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Preparing the docker container

4

https://gitlab.bsc.es/aarmejac/gem5-handson

Brief Introduction to gem5

5

https://gitlab.bsc.es/aarmejac/gem5-handson

● First there was M5

● Then came GEMS

“The gem5 simulator is a modular platform for computer-system architecture
research, encompassing system-level architecture as well as processor
microarchitecture.”

gem5 history

6

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

gem5 is open source - resources

● gem5 code: https://github.com/gem5/gem5
● gem5 website: https://www.gem5.org
● gem5 YouTube: https://youtube.com/@gem5
● gem5 Slack:

https://gem5-workspace.slack.com/join/shared_invite/zt-2e2nfln38-xsIkN1aRm
ofRlAHOIkZaEA

7

https://gitlab.bsc.es/aarmejac/gem5-handson
https://github.com/gem5/gem5
https://www.gem5.org
https://youtube.com/@gem5
https://gem5-workspace.slack.com/join/shared_invite/zt-2e2nfln38-xsIkN1aRmofRlAHOIkZaEA
https://gem5-workspace.slack.com/join/shared_invite/zt-2e2nfln38-xsIkN1aRmofRlAHOIkZaEA

https://gitlab.bsc.es/aarmejac/gem5-handson

gem5-20+: A new era in computer architecture simulation

8

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Why simulation?

● Need a tool to evaluate systems that don’t
exist (yet)

○ Performance, power, energy, etc.

● Very costly to actually make the hardware
● Computer systems are complex

○ Not easy to be accurate without a full system view

● Simulation can be parameterized
○ Design-space exploration of parameters
○ Sensitivity analysis

9

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

gem5 goals

10

● Anyone (including non-architects) can
download and use gem5

● Used for cross-stack research:
○ Change kernel, change runtime, change

hardware, all in concert
○ Run full ML stacks or other emerging apps

● You can help the community!
○ 100s of contributors & 1000s(?) of users

● Aim to meet the needs of
○ Academic community
○ Industry research and development
○ Classroom use

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Kinds of simulation

● Functional simulation
● Instrumentation-based
● Trace-based
● Execution-driven
● Full system

11

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Execution driven

● Functional and timing simulation is combined
● Real instruction flow is simulated
● gem5 in Syscall Emulation mode, and many others

Full system

● Components modeled with enough fidelity to boot unmodified Linux
● Simulated applications run on top of this simulated Linux OS
● gem5 in Full System mode, and others

Kinds of simulation (gem5)

12

https://gitlab.bsc.es/aarmejac/gem5-handson

Nomenclature (gem5)

● Host: The actual hardware you are using
● Simulator: Runs on the host

○ Exposes hardware to the guest

● Guest: Code running on simulated hardware
○ OS running on gem5 is guest OS
○ gem5 is simulating hardware

● gem5/simulator code: Runs natively
○ executes/emulates the guest code

● Guest’s code: (or benchmark, Workload, etc.)
○ Runs on gem5, not on the host

13

gem5 organization and software architecture

14

https://gitlab.bsc.es/aarmejac/gem5-handson

gem5 software architecture

15

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

gem5 architecture: SimObject

16

● Model - this is the C++ code in src/
○ does the timing simulation

● Parameters - python code in src/
○ Expose parameters for each SimObject

● Instance or Configuration - python code
○ A particular choice for the parameters
○ May connect multiple SimObjects
○ Examples

■ In the gem5 standard library
■ In configs/

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Instantiate a SimObject (L1I cache) and connect with cpu

17

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

gem5’s main abstractions: Memory Requests

18

● Ports allow you to send requests and receive responses - unidirectional
● Anything with a Request port can be connected to any Response port

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

gem5’s main abstractions: ISA vs CPU model

19

● ISA and CPU models are orthogonal
○ Any ISA should work with any CPU model

● “Execution Context” is the interface
● gem5 supports multiple ISAs: x86, Arm, RISC-V

https://gitlab.bsc.es/aarmejac/gem5-handson

How does gem5 simulate?

20

https://gitlab.bsc.es/aarmejac/gem5-handson

gem5 architecture: Simulation

21

gem5 is a discrete event simulator

At each timestep:

1. Event at the head is dequeued

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

gem5 architecture: Simulation

22

gem5 is a discrete event simulator

At each timestep:

1. Event at the head is dequeued
2. The event is processed

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

gem5 architecture: Simulation

23

gem5 is a discrete event simulator

At each timestep:

1. Event at the head is dequeued
2. The event is executed
3. New events may be scheduled

All SimObjects can add events into
the event queue

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Discrete event simulation example

24

● To model things that take time, schedule the next event in the future
○ latency of current event

● Can call functions instead of scheduling events, but they occur at the same “time”

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Discrete event simulation example

25

● To model things that take time, schedule the next event in the future
○ latency of current event

● Can call functions instead of scheduling events, but they occur at the same “time”

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Discrete event simulation example

26

● To model things that take time, schedule the next event in the future
○ latency of current event

● Can call functions instead of scheduling events, but they occur at the same “time”

https://gitlab.bsc.es/aarmejac/gem5-handson

Using the gem5 standard library to instantiate our system

27

https://gitlab.bsc.es/aarmejac/gem5-handson

● Purpose: to provide a set of predefined components that can be used to build
a simulation - does the majority of the work for you.

● Due to its modular object-oriented design
○ gem5 can be thought of as a set of components (SimObjects) that can be plugged together to

form a simulation
○ Processor: have one or more cores (SimObjects) which are of some CPU model (c++ code)
○ Cache hierarchy: a set of caches (SimObjects) that can be connected to a processor and

memory system
○ Memory system: a set of memory controllers and memory devices that can be connected to

the cache hierarchy
○ Board: The backbone of the system. You plug components into the board.

28

gem5's Standard Library

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

gem5 standard library components: SimpleBoard

29

● Will use the SimpleBoard
○ Can run any ISA in Syscall Emulation mode
○ Defines all the necessary SimObjects

● Requires other components from the
standard library

○ processor - which can have one or more
cores

○ cache_hierarchy - defines all the levels
between the processor and memory

○ memory - which will define memory
controllers and interfaces (DDR, HBM, …)

from
gem5.components.board.simple_board
import SimpleBoard

Setup the board.

board = SimpleBoard(

clk_freq="1GHz",

processor=processor,

memory=memory,

cache_hierarchy=cache_hierarchy,

)

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Processor: Using the BaseCPUProcessor

30

● Expects a list of cores
● Cores can be of any available CPU model
● Can mix different core models

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Cache hierarchy

31

● Different components available
○ Private L1 caches
○ Private L1 and private L2 cache
○ Private L1, private L2 cache, shared L3 cache

from gem5.components.cachehierarchies.classic.private_l1_private_l2_cache_hierarchy
import (

PrivateL1PrivateL2CacheHierarchy,

)

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Modeling memory

32

gem5’s memory system consists of two main components:

1. Memory Controller - responsible for scheduling and issuing read/write
requests

2. Memory Interface(s) - implements the architecture and timing parameters

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Modeling memory

33

● SimpleMemory() allows the user to not worry about timing parameters and
instead just give the desired latency and bandwidth

● ChanneledMemory() encompasses a whole memory system (both the
controller and the interface)

 Component for a single-channel memory system using a DDR31600 DIMM

from gem5.components.memory import SingleChannelDDR3_1600

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Plug components into the board

34

● Boards aggregate components
● Once we have instantiated required

objects, we can pass them to a board for
simulation

● SimpleBoard can run any ISA in Syscall
Emulation (SE) mode

from
gem5.components.board.simple_board
import SimpleBoard

Setup the board.

board = SimpleBoard(

clk_freq="1GHz",

processor=processor,

memory=memory,

cache_hierarchy=cache_hierarchy,

)

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Set up the workload and simulation

35

● Now we set the workload which we need to run on the simulated system
● We pass the whole board to the simulator object and start the simulation
● This completes the required configuration for running an SE mode simulation

board.set_se_binary_workload(
BinaryResource(local_path=f"/usr/local/bin/{args.binary}",id=args.binary),
arguments=args.arguments)

simulator = Simulator(board=board, full_system=False)

print("Beginning simulation!")

simulator.run()

https://gitlab.bsc.es/aarmejac/gem5-handson

Invoking gem5 to perform a simulation

36

https://gitlab.bsc.es/aarmejac/gem5-handson

Performing a simulation

37

● The most common format to start a gem5 simulation is with the below command

● An example command:

● There are a lot of gem5_options available, one of which is to specify an output
directory where all the simulation data will be stored (-d)

○ The default output directory is m5out/

gem5.binary [gem5_options] config.py [config_file_options]

gem5.opt -d /tmp/first_gem5_run configs/example.py --cores=4

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

gem5’s output

38

In m5out/ you will see:

● stats.txt - The statistics from the simulation
○ In text format

● config.{ini/json} - The configuration file used in structured format
○ It contains each and every connection, component and parameter

● config*.{pdf/svg} - A visualization of the configuration for the system and
caches

https://gitlab.bsc.es/aarmejac/gem5-handson

Hands-on with gem5

39

https://gitlab.bsc.es/aarmejac/gem5-handson

Starting the docker container

40

https://gitlab.bsc.es/aarmejac/gem5-handson

Our Setup

41

Simulating

Parsing

Infrastructure

V
is

ua
liz

at
io

n

1 - Infrastructure

42

https://gitlab.bsc.es/aarmejac/gem5-handson

Infrastructure

● A Docker container that includes:
○ Pre-built gem5 binary for RISC-V
○ Static application binaries that we will use for Syscall Emulation simulations
○ A configuration script to instantiate the system we want to simulate

● A gitlab repository that we will now clone, contains:
○ Slide deck
○ README with commands for hands-on
○ Parsing script we will use during the hands-on

43

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Running the container

● Create a directory to store the output of simulations on your host
● Run the docker container, this will drop us inside the container

44

$ mkdir riscv_handson

$ cd riscv_handson

$ docker run -it --rm registry.gitlab.bsc.es/aarmejac/gem5-handson

root@650acbc0e4d3:~#

host container

https://gitlab.bsc.es/aarmejac/gem5-handson
http://registry.gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Exploring the container

● Once inside the container we can explore the file system

45

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Cloning the helper repository

● We will clone the gitlab repository inside the docker container

46

root@650acbc0e4d3:~# git clone https://gitlab.bsc.es/aarmejac/gem5-handson.git

root@650acbc0e4d3:~# ls gem5-handson

README.md demo-Dockerfile parse_gem5_stats.py

host container

https://gitlab.bsc.es/aarmejac/gem5-handson
https://gitlab.bsc.es/aarmejac/gem5-handson.git

2 - Simulating with gem5

47

https://gitlab.bsc.es/aarmejac/gem5-handson

Inspecting gem5 source code

48

● build - compiled code and ISA specific
gem5 binary

● configs - pre-written configuration files to
instantiate Systems-on-Chip for simulation

● src - gem5 source code with the different
models

gem5/ (some files are omitted for brevity)

├── build

├── build_opts

├── build_tools

├── configs

├── ext

├── include

├── src

├── tests

├── util

├── SConstruct

└── TESTING.md

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

The gem5 standard library

49

● We have a lot of components on a System-on-Chip (core, caches, memory, …)
○ And gem5 has multiple models for each component!

● It can be challenging to configure/instantiate a System-on-Chip
○ Solution: gem5 standard library

gem5/src/python/gem5/components/
├── boards
├── cachehierarchies
├── devices
├── __init__.py
├── memory
├── prefetch
└── processors

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

System-on-Chip instantiation

50

gem5/src/python/gem5/components/
├── boards
├── cachehierarchies
├── devices
├── __init__.py
├── memory
├── prefetch
└── processors

root@650acbc0e4d3:~# vim /root/gem5/configs/example/riscv-se.py

cache_hierarchy = PrivateL1PrivateL2CacheHierarchy(
 l1d_size="32KiB", l1i_size="32KiB", l2_size="512KiB"
)

Setup the system memory.
memory = SingleChannelDDR3_1600()

processor = BaseCPUProcessor(
 cores=create_cores(args.cores, args.vlen, args.elen)
)

Setup the board.
board = SimpleBoard(
 clk_freq="1GHz",
 processor=processor,
 memory=memory,
 cache_hierarchy=cache_hierarchy,
)

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Inspecting the benchmark

A bit about vectorized code

● If a vector register is wider you can
do more work per instruction

● As you increase vector width the
number of instructions you need to
execute is lower

● Wider vectors have a hardware
cost, it is not for free!

● In RISC-V the size of the vector in
bits is called VLEN.

51

Image source:
https://www.irit.fr/~Thomas.Carle/wp-content/uploads/sites/32/2024/05/A-predict
able-SIMD-library-for-GEMM-routines.pdf

https://gitlab.bsc.es/aarmejac/gem5-handson
https://www.irit.fr/~Thomas.Carle/wp-content/uploads/sites/32/2024/05/A-predictable-SIMD-library-for-GEMM-routines.pdf
https://www.irit.fr/~Thomas.Carle/wp-content/uploads/sites/32/2024/05/A-predictable-SIMD-library-for-GEMM-routines.pdf

https://gitlab.bsc.es/aarmejac/gem5-handson

Simulating - use case: VLEN sizing
Perform 3 simulations providing different VLENs (vector register lengths)

52

host container

root@650acbc0e4d3:~# gem5.opt -d /root/results/vlen-128
/root/gem5/configs/example/riscv-se.py rvbench_gemmopt 128 -v 128

root@650acbc0e4d3:~# gem5.opt -d /root/results/vlen-256
/root/gem5/configs/example/riscv-se.py rvbench_gemmopt 128 -v 256

root@650acbc0e4d3:~# gem5.opt -d /root/results/vlen-512
/root/gem5/configs/example/riscv-se.py rvbench_gemmopt 128 -v 512

vlen 128 256 512

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Simulating - Check the output directories

● Check the output directories
● There will be a non-empty stats.txt for every successful simulation

53

host container

root@650acbc0e4d3:~# ls /root/results

vlen-128 vlen-256 vlen-512

root@650acbc0e4d3:~# ls /root/results/vlen-128

citations.bib config.ini config.json cpt.604173000
stats.txt

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Inspecting the stats file

● At the end of the simulation a stats file is generated, containing the relevant
information to extract conclusions from the execution.

● Inspect stats file

54

host container

root@650acbc0e4d3:~# grep -m1 commitStats0.numInsts
/root/results/vlen-128/stats.txt

board.processor.cores.core.commitStats0.numInsts 4453140
Number of instructions committed (thread level) (Count)

https://gitlab.bsc.es/aarmejac/gem5-handson

3 - Parsing

55

https://gitlab.bsc.es/aarmejac/gem5-handson

Parsing

● The script to parse statistics is in the gitlab repository
○ which we already cloned: gem5-handson

56

root@5a52b12bae2d:~# cd gem5-handson

root@5a52b12bae2d:~/gem5-handson# ls

README.md demo-Dockerfile parse_gem5_stats.py

root@5a52b12bae2d:~/gem5-handson# apt-get install python3-tabulate

root@5a52b12bae2d:~/gem5-handson# python parse_gem5_stats.py /root/results

host container

https://gitlab.bsc.es/aarmejac/gem5-handson

Parsed results

57

● If you just want a machine to run this type of GEMMs…
○ Would you implement a VLEN of 512 bits or a VLEN of 128 bits?

4 - Visualization for performance
understanding (if time permits)

58

https://gitlab.bsc.es/aarmejac/gem5-handson

Gem5 trace generation infrastructure

59

● Tracing can be enabled by passing debug flags to the gem5 binary:

● Generates a file in the output directory named trace.out.gz
○ Which contains the trace generated by the Fetch flag

● gem5 comes with a large number of debug flags
○ You can also add your own

gem5.opt --debug-flags=Fetch --debug-file=trace.out.gz

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Generating traces to visualize the pipeline

60

● The O3PipeView debug flag enables visualization of the execution pipeline

root@5a52b12bae2d:~# gem5.opt --debug-start=187742000 --debug-end=195000000
--debug-flags=O3PipeView,O3CPUAll --debug-file=o3pipeview.gz -d /root/results/vlen-512-trace
/root/gem5/configs/example/riscv-se.py rvbench_gemmopt 128 -v 512

root@5a52b12bae2d:~# zcat /root/results/vlen-512-trace/o3pipeview.gz | grep O3Pipe | head -n 4

O3PipeView:fetch:81000:0x00010632:0:8:c_li a3, 0

O3PipeView:decode:0

O3PipeView:rename:0

O3PipeView:dispatch:0

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Konata pipeline viewer

● Konata is an instruction pipeline visualizer for gem5-O3PipeView formats

Getting Konata

● Download a pre-built binary from here (unzip and binary is inside)
○ Direct download links in the README

61

https://gitlab.bsc.es/aarmejac/gem5-handson
https://github.com/shioyadan/Konata/releases

https://gitlab.bsc.es/aarmejac/gem5-handson

$ docker cp container_name:/root/results ./

$ ls results

vlen-128 vlen-256 vlen-512 vlen-512-trace

$ konata # this opens a konata window

Using Konata

● Copy the results directory from container to host
● Launch Konata and load the trace file from menu or drag&drop

62

host

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Konata viewer - Opening the trace

63

● When the Konata window opens, chose the trace to load from the
File option in the top-left

https://gitlab.bsc.es/aarmejac/gem5-handson

Wrap up

64

https://gitlab.bsc.es/aarmejac/gem5-handson

Wrap-up

65

● gem5 is a detailed full-stack computer architecture simulator
○ Led by academia with a lot of recent contributions from industry

● RISC-V support in gem5 is now very stable
○ Last year we managed to upstream the RISC-V vector ISA support
○ Many bugfixes and new features added since!
○ gem5 v25.0 just released

● The gem5 standard library is a great starting point to perform out-of-the-box
simulations

● Repository with materials and container are public
○ The container will be available for download for at least another week

https://gitlab.bsc.es/aarmejac/gem5-handson

Backup

66

https://gitlab.bsc.es/aarmejac/gem5-handson

Kinds of simulation (details)

● Functional simulation - referred as emulation
○ Executes programs correctly. Usually no timing information
○ Used to validate correctness of compilers, etc.
○ RISCV Spike, QEMU, RARS, and gem5 ‘atomic’ mode

● Trace based
○ Generate addresses/events and re-execute
○ Can be fast (no need to do functional simulation). Reuse traces
○ If execution depends on timing, this will not work!
○ “Specialized” simulators for single aspect (e.g. just cache hit/miss)

● Instrumentation based
○ Often binary translation. Runs on actual hardware with callbacks
○ Like trace based. Not flexible for new ISAs.
○ DynamoRIO (RISC-V, Arm), PIN (x86), NVBit (nvidia)

67

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

The metaphor: Plugging components together into a board

68

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Modeling caches

69

Two types of cache models in gem5:

1. Classic Cache: Simplified, faster
and less flexible.

2. Ruby: Models cache coherence in
detail

a. Coherence controller
b. Caches + Interface
c. Interconnect

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Overview

70

gem5 compiled binary (gem5.opt)

● Can be thought of as a C++
program that interprets a Python
script (Config file)

● Contains the object code of the c++
models

● Gives the script the m5 module
which provides the interface
between the configuration script
and the gem5 simulator

Simulation configuration (config.py)

● Instantiation of SimObjects
● Sets the parameters for each

SimObject
● Specifies the connections

between SimObjects
○ hierarchy of caches, core

clusters, etc.
● stdlib provides components that

wrap models into a standard API

https://gitlab.bsc.es/aarmejac/gem5-handson

https://gitlab.bsc.es/aarmejac/gem5-handson

Gem5 trace generation infra

71

gem5 DPRINTF

● We can generate traces for any interaction happening in gem5 between any
component

● This is done by inserting DPRINTF statements in the source code

gem5/src/cpu/o3/iew.cc

1161 for (; inst_num < insts_to_execute;
1162 ++inst_num) {
1163
1164 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1165
1166 DynInstPtr inst = instQueue.getInstToExecute();
1167
1168 DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%llu].\n",
1169 inst->pcState(), inst->threadNumber,inst->seqNum);

https://gitlab.bsc.es/aarmejac/gem5-handson

