
RISC-V principles for
understanding how to

freely develop new
solutions

November 2024 BETC RISC-V Principles

https://www.bsc.es/education/training/bsc-training/bsc-training-course-risc-v-principles-understanding-how-freely-develop-new-solutions/agenda

Who we are?
Teresa Cervero
Group leader
Technical Management HW
engineering
▪ Course Convener

Xavier Martorell
Group leader
Parallel Programming Models
Group
▪ He will lecture Fundamentals
and OS session

Aaron Call
Established researcher
Data Centric Computing Group
▪ He will lecture Virtualization
for cloud session

Julián Pavón
Research Engineer
Computer Architecture for
Parallel Paradigms Group
▪ He will lecture the Potential of
custom instructions session

Roger Ferrer
Group leader
Compiler and Tool chain for
HPC Group
▪ He will lecture RVV with the
compiler session

Filippo Mantovani
Group leader
Software Development Vehicles
▪ He will lecture Parallelization
and RVV session

Pablo Vizcaíno
Research Engineer
Software Development Vehicles
Group
▪ He will assist you on the RVV
hands-on session

Day 1 Day 2 Day 3

Rohan Ahmed
Research Engineer
Parallel Programming Models
Group
▪ He will assist you on the
Fundamentals and OS session

Iván Vargas
Research Engineer
Computer Architecture for
Parallel Paradigms Group
▪ He will lecture the Potential of
custom instructions session

Training structure

Day 1: Fundamentals

RISC-V ecosystem

RISC-V ISA Basics

Lunch Break
Booting an OS with

QEMU
Break (15:30 - 16:00)

Hands-on

Day 2: Virtualization &
emulation

RISC-V & Pytorch

RISC-V & Singularity

Break (11:00 - 11:30)

Hands-on

Lunch Break

RISC-V custom instructions

Break (15:30 - 16:00)

Hands-on

Day 3: RISC-V Vector
Extension

HPC Fundamentals

RISC-V Vector extension

Break (11:00 - 11:30)

Hands-on

Lunch Break

RVV & compiler

Break (15:30 - 16:00)

Hands-on

Time

9:00-10:00

10:00-11:00

11:00-12:00

12:00-13:00

13:00-14:00

14:00-15:00

15:00-16:00

16:00-17:30

Software requirements
 SSH: Secure shell (HPC system connection)

Linux/Mac OS: native support of secure shell “ssh user@host”
Windows: need to install a ssh program

PuTTY: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
MobaXterm: http://mobaxterm.mobatek.net/download.html

QEMU: www.qemu.org
 RISCV Documentation: https://wiki.qemu.org/Documentation/Platforms/RISCV

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://mobaxterm.mobatek.net/download.html
http://mobaxterm.mobatek.net/download.html
http://www.qemu.org/
https://wiki.qemu.org/Documentation/Platforms/RISCV

MobaXterm: ssh configuration

Training material

Slides available after sessions at:
https://tinyurl.com/betc-riscv-2024

Hands-on: connection to HCA network (BSC)
Temporal accounts
Guidelines per session

Communication by email
Topic: [BETC-RISCV] <Query/Doubt>
To: teresa.cervero@bsc.es

https://tinyurl.com/betc-riscv-2024
mailto:teresa.cervero@bsc.es

RISC-V: An overview

Global standards: a catalyst to accelerate technical Innovation

Standards create access to
opportunities and spur
growth for a wide range of
stakeholders

RISC-V is a standard-
defined Instruction Set
Architecture developed by
a global community

Standards have been
critical to technology
innovation, adoption, and
growth for decades

What is RISC-V?

Hardware
 – Multi-heart
CPUs, vector,

Crypto & Bitmanip,
hypervisor, virtual memory

AI SoCs
Application
processors

Software
Linux

Drivers
AI Compilers

Hardware
 – RV64, privilege

modes, interrupts –

IoT SoCs
Microcontrollers

Software
RTOS

Firmware

Hardware
 – RV32 –

Proof of Concept SoCs
Minion processors for
power management,
communications, …

Software
Bare metal software

Hardware
ISA Definition

Test Chips

Software
TestsCo

m
pl

ex
it

y

2010 – 2016 2017 – 2018 2019 – 2020 2021

An open Instruction Set Architecture (ISA)
Standardisation activities driven by expert members
Numerous areas of focus ranging from HPC & ML to the data centre to embedded computing

Additional extensions, tools and resources

Why is RISC-V interesting for HPC?
Freely develop new technologies based
upon RISC-V
Standards community driven
Modular design of ISA

Pick and mix parts that you need
from low power embedded devices to HPC
and IA accelerators

Why RISC-V International?

RISC-V International (RVI): a global non-profit association
Founded in 2015
Community driven organization:

4000+ members in + 70 countries
Across industries and technical disciplines

Functions:
Supports the open RISC-V Instruction Set Architecture (ISA)
Develops additional extensions, tools, and resources paving the way for the next 50 years of computing
design and innovation
Connects the community and industry through academia, commercialization, and strategic leadership
RISC-V is not…
A company
A CPU implementation

https://riscv.org/members/

The definition of open computing is RISC-V
RISC-V is the most prolific and open Instruction Set Architecture in history

RISC-V is inevitable RISC-V enables the best
processors

RISC-V is rapidly building the
strongest ecosystem

Mission: RISC-V is the industry
standard ISA across computing

>10 Billion RISC-V cores already
shipped
Adoption moving rapidly across all
domains
Demand at every performance level
Shared investment driving ecosystem

RISC-V enables profound innovation
from low end to high end applications

Inherent and sustainable performance and
efficiency advantage
Design flexibility and freedom
Supported by massive community enabling
the most efficient designs for full
spectrum of applications
Modern design for fewer instructions

RISC-V instrumented with software top
of mind

Open standards enable software
choice Applications keen to run on RISC-V.
Toolchain and OS support required for
Extension ratification
Single hypervisor standard to simplify
and unify application support
Thousands of software developers
Strategic investment by industry and
geographies

Challenges and opportunities

Legacy ISA RISC-V ISA

Complexity 1500+ base instructions 47 base instructions

Design freedom $$$ – Limited Free – Unlimited

License and Royalty fees $$$ Free

Design ecosystem Moderate Growing rapidly. Numerous extensions,
open and proprietary cores

Software ecosystem Extensive Growing rapidly

Barriers removed
… Design risk
… Cost of entry
… Partner limitations
… Supply chain

Current ISA business models

Business Model Chips? Architecture
License

Commercial Core
IP

Add Own
Instructions

Open-Source Core
IP

Microprocessor Yes, two vendors No Yes, one vendor No No

Proprietary ISA Yes, many vendors
Yes, expensive
and restricted Yes, one vendor No, (Mostly) No

RISC-V Open
standard ISA Yes, many vendors

Yes, ISA is an
open standard

Yes, many
vendors

Yes Yes, many
available

RISC-V enables design freedom

Open interfaces are accepted practice

Field Proprietary
predecessor Open Standard Open Implementation

Commercial
implementation on

open standard

Networking Now obsolete Ethernet, TCP/IP Many Cisco, Juniper

OS Windows Posix Linux, FreeBSD
Red Hat, Canonical, Suse,

AIX, Zephyr

Compilers Intel icc, ARMcc, Xcode C gcc, LLVM Greenhills, IAR

Databases Oracle 12C, DB2 SQL MySQL, PostgresSQL Oracle, SQLServer, DB2

Graphics DirectX OpenGL Mesa3D NVIDIA, AMD, Intel

ISA x86, ARM, IBM360 RISC-V LowRISC, other
community led

Numerous RISC-V
implementations

Successful open standards, enabling multiple implementations

Industry outlook

RISC-V future
is very bright

Cloud and
data center applications top
cloud providers like Amazon and
Alibaba are designing their own
chips.

Automotive is transforming from
autonomous vehicles to
infotainment to safety, the whole
vehicle relies on innovative
electronics.

Industrial IoT incorporating
artificial intelligence in
manufacturing and industrial
processes.

Mobile and wireless continue
rapid evolution with each
generation of hardware and
increased capability.

Consumer and IoT devices bring
incredible innovation and volume
with billions of connected devices
being in the next 5-10 years.

Memory was the largest
semiconductor category by sales
with $158 billion in 2018, and the
fastest-growing, with sales
increasing.

RISC-V Ecosystem
RISC-V Ecosystem landscape
https://landscape.riscv.org/

Changing all the time

RISC-V >< BSC ecosystem

SW
 S

ta
ck

H
W

 S
ta

ck

https://landscape.riscv.org/

BSC contributions
Community Member of RVI: https://riscv.org/members/
Participant in SIG & TW: https://lists.riscv.org/g/main

Special Interest Group (SIG): Forums to discuss
SIG-HPC → High-Performance Computing
SIG-Safety → Functional Safety

Technical Working Group (TW)
RVV (Vector Extension)
IME (Integrated Matrix Extension)
AME (Attached Matrix Extension)

Contributing to strengthen the ecosystem
RISC-V Summit Europe: https://riscv-europe.org/
SOHA (Spanish Open Hardware Alliance): https://sohariscv.org/
Workshops and events (SC, ISC, HiPEAC…)
BSC LOCA GitHub: https://github.com/bsc-loca
FPGA-cluster: https://www.bsc.es/supportkc/docs/MEEP/intro

BSC & RISC-V ecosystem

Comercial RISC-V
board (scalar CPU)

Comercial RISC-V
board (scalar
CPU+vehave)

SDV into FPGA

https://riscv.org/members/
https://lists.riscv.org/g/main
https://riscv-europe.org/
https://sohariscv.org/
https://github.com/bsc-loca
https://www.bsc.es/supportkc/docs/MEEP/intro

BSC & RISC-V ecosystem
SW Stack Tools

QEMU (BSC.RAVE): https://www.quemu.org
Gem5 (BSC.RISC-V): https://github.com/gem5/gem5
Pytorch (BSC.porting RV): https://pytorch.org/
PyCOMPS/COMPs: https://pypi.org/project/pycompss/
TensorFlow (BSC.porting RV): https://www.tensorflow.org/
OpenStack (BSC.porting RV): https://www.openstack.org/
OpenMP (BSC.target): https://www.openmp.org/
MPI (BSC.Vectorization): https://docs.open-mpi.org/
OpenSBI (images): https://github.com/riscv-software-src/opensbi
LLVM (BSC.autovectorization): https://llvm.org/
Vehave: https://www.bsc.es/research-and-development/software-and-apps/software-
list/vehave/downloads
Paraver: https://tools.bsc.es/paraver
Extrae: https://tools.bsc.es/extrae

More under construction…

https://www.quemu.org/
https://github.com/gem5/gem5
https://pytorch.org/
https://pypi.org/project/pycompss/
https://www.tensorflow.org/
https://www.openstack.org/
https://www.openmp.org/
https://docs.open-mpi.org/
https://github.com/riscv-software-src/opensbi
https://llvm.org/
https://www.bsc.es/research-and-development/software-and-apps/software-list/vehave/downloads
https://www.bsc.es/research-and-development/software-and-apps/software-list/vehave/downloads
https://tools.bsc.es/paraver
https://tools.bsc.es/extrae

Sargantana core & environment

FPGA / Linux image

Pipeline visualizer
(Konata support)

Simulators support

Verification environment

Questa advanced
simulator

MEEP shell integration for
FPGA emulation
Buildroot linux image port

 Gitlab CI/CD
Verilator compilation
ISA tests verification
Microbenchmark
performance verification

 Commit trace
Spike compatible

 UVM environment (WIP)
Spike co-simulation
RISC-V DV random test
generator

RISC-V related BSC R&D

RISC-V Learning
Learning RISC-V is a challenging, highly rewarding activity.
Many resources available to help you on this technical journey
New additions to these resources are welcome (contact at info@riscv.org)

RISC-V Exchange (https://riscv.org/exchange/): hosts HW, SW, services and learning material
Books on RISC-V (https://riscv.org/community/learn-about-risc-v/risc-v-books/) available
Educational Materials list (https://riscv.org/educational-resources/): a collection of open
curricula from academic institutions around the world
Google Scholar provides an extensive and growing list of academic publications related to RISC-
V

RISC-V Mentorship program (https://riscv.org/risc-v-mentorship-program/)
Become RISC-V Embassador (https://riscv.org/ambassadors/)

https://riscv.org/exchange/
https://riscv.org/exchange/
https://riscv.org/community/learn-about-risc-v/risc-v-books/
https://riscv.org/community/learn-about-risc-v/risc-v-books/
https://riscv.org/educational-resources/
https://riscv.org/educational-resources/
https://scholar.google.com/scholar?scisbd=2&q=%22risc-v%22&hl=en&as_sdt=0,48
https://riscv.org/risc-v-mentorship-program/
https://riscv.org/risc-v-mentorship-program/
https://riscv.org/ambassadors/

Engage with RISC-V

Achieve Business ROI
Gain Technical Advantage

Elevate Industry Leadership Build Strategic Network

Reduce technical overhead and accelerate roadmap with global
open standard
Reduced strategic risk implicit in collective investment of global
stakeholders
Accelerate sales pipeline with RISC-V support across channels
Showcase solutions on RISC-V Exchange and Ecosystem
Landscape
Qualify products as RISC-V CompatibleTM

Deepen expertise in Special Interest Groups
Show technical and industry leadership
Leverage Industry Market development
Engage global reach of RISC-V marketing,
media, and social channels

Gain insight and access to technical deliverables in motion
Infuse your technical directions in specifications
Accelerate technical knowledge working with domain
experts, cultivate and retain talent
Be part of local developer groups and industry developer
networks

Cultivate partner, supply chain and customer strategic
relationships
Align and leverage global, local and industry networks,
alliances, and events
Amplify visibility online, and at events

Special Interest Group – High Performance Computing
SIG-HPC

Get involved in SIG-HPC
You need to be a RISC-V member
(either individual or as part of your organization)
https://lists.riscv.org/g/sig-hpc

Subscribe:
Send email to: sig-hpc+subscribe@lists.riscv.org

Monthly meetings
3ʳᵈ Thursday of the month
Next meeting: Nov 20ᵗʰ @ 16:00 CET

https://lists.riscv.org/g/sig-hpc
mailto:sig-hpc+subscribe@lists.riscv.org

RISC-V in Europe

RISC-V in Europe (European Commission)

RISC-V Vision for EuroHPC
Towards the next generation of European HPC technology based on RISC-V

Partnerships (Academia & industry): a key piece

Open-source and open-standards to design & develop locally but impacting/contributing globally

Towards European post-Exascale supercomputer using RISC-V
RISC-V accelerators

Traditional HPC workloads
New Data Analytic workloads (Digital Twins, AI models…)

RISC-V in Europe (EuroHPC)

Software Stack
Provide a European software ecosystem,
including algorithms, tools, models,
libraries…

3

Hardware Stack
Provide a European open hardware
ecosystem able to supply the high

demanding requirements imposed by the
modern workloads, in terms of power,

performance, area

4

Users
Strengthen HPC Use, Skills &
Competencies in HPC, to supply market
needs.1

Applications
Characterize and optimize HPC

applications, including the convergence
between HPC and AI

2

RISC-V Principles

RISC-V Principles
RISC-V was designed to provide a highly modular and extensible instruction
set and includes a large and growing set of standard extensions, where each
standard extension is a bundle of instruction-set features.

Unlike other ISAs:
RISC-V has a broad set of contributors and implementers.
RISC-V allows users to add their own custom extensions.

How to organize the information?
Instruction → ISA → Extension → Profile → Platform

RISC-V Basic Concepts
Platform

Instruction: Language of the computer ~ word
Instruction Set Architecture (ISA): List of
processor commands in machine language
Extension: group of instructions that add
further functionality to the base architecture (I)
Profile: set of common ISA extensions together
(Mandates + Options)
Platform: set of specs for building real
hardware platforms/systems (procedures,
boot process,...)

Profile

Extension

ISA

Instruction

RISC-V ISA
Volumen I: User-level ISA (unprivileged architecture)
Volumen II: Privileged Architecture

A way of
managing shared resources (Memory, I/O, cores)
protecting shared resources
isolating from implementation details  Split between layers of the SW Stack

Describes {Machine, Supervisor, Hypervisor} ISA

Layer Communicates with Via
Application Application Execution Environment (AEE) Application Binary Interface (ABI)

Operating System Supervisor Execution Environment (SEE) System Binary Interface (SBI)
Hypervisor Hypervisor Execution Environment (HEE) Hypervisor Binary Interface (HBI)

RISC-V specs: https://riscv.org/technical/specifications/

https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-ec3b886-2024-11-07/riscv-unprivileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-ec3b886-2024-11-07/riscv-privileged.pdf
https://riscv.org/technical/specifications/

User-level ISA: Extensions GCV

Base Integer instructions (I)
Multiply-Divide Extension (M)
Memory instructions (A)
Floating Point Extensions (F | D | Q)
Compressed instructions (C)
Privilege mode instructions  CSRs and changing levels (Calls)
G: roll-up of I + M + A + F + D

Standard naming convention for an implementation: RV[###][ab…]
RV – indicates RISC-V architecture
[###] – {32, 64, 128} indicate the width of the integer register file and the size of
the user address space
[ab…] – Indicate the set of extensions supported by an implementation

Example: Sargantana is RV64IMAFV

Common standard extensions, but not a complete
list

User-level ISA: Extensions GCV (Instruction types)

Memory operations and data handling
Set a register to a fixed constant value
Load/store operations: Copy data from/to a memory location to/from register
Read/write data from HW Devices

Arithmetic and logic operations
Add, subtract, multiply, divide values of 2 registers and placing result in a register
Bitwise operations
Compare values in registers
Floating-point instructions

33

User-level ISA: Extensions GCV (Compressed
Instructions)

Adds short 16-bit instruction encoding for common operation
1:1 mapping of compressed instructions to standard Base instructions (I)

Typically, 50%-60% RISCV instructions can be replaced by
compressed instructions (RVC) 🡺 25% - 30% code reduction

When “C” instructions are used?
Immediate or address offset is small
X0, X1 or X2 is zero
Destination register and first source register are identical
When using the 8 most common registers

34

User-level ISA: Extensions GCV (Vector Extension)

35

Compact several operations under one instruction:
One short instruction encodes N operations

Expressive, tells hardware that these N operations are:
Independent
Can use the same functional unit
Access disjoint registers
Access registers in same pattern as previous operation
Access a contiguous block of memory (unit-stride load/store)
Access memory in a known pattern

Scalable:
Can run same code on more parallel pipelines (lanes)

RISC-V Privileged Modes

Privileged specification defines 3 levels of privilege = Modes
Modes:

Machine mode (M)
Highest privileged mode
The only required one

From MCU to high-performance processors
Hypervisor mode (HS)
Supervisor mode (S)

Control Status Registers (CSRs)

RISC-V Modes
Level Name Acronym

0 User / Application U
1 Supervisor S
2 Hypervisor HS
3 Machine M

RISC-V Privileged Extension

37

App
ABI
AEE

Conventional Operating System supporting multiprogrammed execution of multiple
applications
SBI: Supervisor Binary Interface
SEE: Supervisor Execution Enviroment

App App
ABI ABI

OS
SBI
SEE

A simple system supporting only a single application running
ABI: Application Binary Interface
AEE: Application Execution Environment

App App App App

ABI ABI ABI ABI

OS OS
SBI SBI

Hypervisor
HBI
HEE

Virtual Machine with multiple OS with a single Hypervisor
HBI: Hypervisor Binary Interface
HEE: Hypervisor Execution Environment

RISC-V Profiles: solving a chicken and egg problem

Profile: set of common ISA extensions together (Mandates + Options)
Define an end application ISA that enables a rich SW ecosystem
Accommodates all implemented technologies => aligning hardware vendors on the
features that will be in the implementations so the SW ecosystem can rely on them to
use those
Freedom & tightly control architecture

Freedom: flexibility to choose what is necessary for a specific implementation
Very tightly control architecture: modules packaged in a way to guarantee certain features

Examples: RVA/B
RVA: RISC-V Application Processor Profile for RV64 application processors’ implementations.
RVB: RISC-V Application Processor Profile for customized 64-bit processors that usually run a
custom build of standards OS source-code distributions.

https://github.com/riscv/riscv-profiles/blob/main/src/rva23-profile.adoc
https://github.com/riscv/riscv-profiles/blob/main/src/rvb23-profile.adoc

RISC-V Application Processor Profile (RVA)

Main goal: align processor vendors targeting binary software markets => SW can rely on the existence of a
certain set of ISA features in a particular generation of RISC-V implementations.
Evolution = maintenance & competitiveness over time:
The mandatory set of extensions must increase over time in successive generations of RVA profile.
RVA profiles may eventually have to deprecate previously mandatory instructions (unlikely in the near future).

RVA23: Supports rich application processor binary SW ecosystem
Structure: Mandatory extensions + 4 kinds of options:

Opt. 1_ Localized options: required for different jurisdictions
Opt. 2_ Development options: new extension in early part of its lifecycle (intended to be mandatory)
Opt. 3_ Expansion options: large implementation overhead and not always needed
Opt. 4_ Transitory options: experimental work (not clear if Will remain in profile or be dropped)

Features:
Vector RVV 1.0 / Hypervisor extension / High-performance vector crypto / … and more

RVB23: Not an alternative to RVA!
Focused on custormizable processors used with custom SW builds
Less mandates & more options

https://lists.riscv.org/g/tech-golden-model/attachment/265/0/rva23-profiles-internal-review-20240321%20(1).pdf
https://lists.riscv.org/g/tech-golden-model/attachment/265/0/rva23-profiles-internal-review-20240321%20(1).pdf

Where & How to contribute?

Many opportunities to contribute and interact!!

SC’24: https://sc24.supercomputing.org/
RISC-V Workshop: RISC-V for HPC

RISC-V Panel: RISC-V and HPC: How Can We Benefit from the Open Hardware Revolution?
HiPEAC’25: https://www.hipeac.net/2025/barcelona/#/

Workshop: RISC-V: the cornerstone iSA for the next generation of HPC infrastructures
RISC-V Hackathon

RISC-V Summit Europe 2025: https://riscv-europe.org/
ISC’25: pending to be confirmed
And much more!!

https://sc24.supercomputing.org/
https://www.hipeac.net/2025/barcelona/#/
https://riscv-europe.org/

More resources
RISC-V specs: https://riscv.org/technical/specifications/
RISC-V Labs: https://riscv.org/risc-v-labs/
OpenHW Group: https://www.openhwgroup.org
CHIPs Alliance: https://chipsalliance.org
RISC-V Certification: https://riscv.org/risc-v-learn-online
RISC-V International YouTube Channel:
https:///www.youtube.com/channel/UC5gLmcFuvdGbajs4VL-WU3g
EdX course: https://edx.org/learn/engineering/harvey-mudd-college-digital-design-2
RISC-V Textbooks

https://ddcabook.com

https://riscv.org/technical/specifications/
https://riscv.org/risc-v-labs/
https://www.openhwgroup.org/
https://chipsalliance.org/
https://riscv.org/risc-v-learn-online
https://edx.org/learn/engineering/harvey-mudd-college-digital-design-2
https://ddcabook.com/

End Session 1!
Lunch break

Starting at 14:00

Intellectual Property Rights Notice

The User may only download, make and retain a copy of the materials for his/her use for non-commercial and research
purposes. The User may not commercially use the material, unless has been granted prior written consent by the
Licensor to do so; and cannot remove, obscure or modify copyright notices, text acknowledging or other means of
identification or disclaimers as they appear. For further details, please contact BSC-CNS.

Barcelona, November 11th, 2024BETC: RISC-V Principles

Every computer must be able to perform arithmetic.
Example: a = b + c 🡺 assembly language add a, b, c
3 operands 🡺 a = destination register (rd), b&c = source register (rs)

How to specify this and other instruction in 32 bits?
Core instruction formats

Opcode [6:0] 🡺 defines format type
Registers: They store operands data. 32 in RISCV

Rd – 5 bits: destination register of operation 🡺 where to store operation result
Rs – 5 bits: source registers 🡺 where input of the operation is

Funct (3 or 7 bits): type of operation to perform on operands
Imm (12 or 20 bits): constant to be used in operation

Instructions

44

Register ALU
Immediate
Store
Branch
Upper Imm.
Jump

Instruction Types: Control Flow & System

System Instructions (Privileged Instructions)
Ecall & Break: Exceptions & interrupts. Unscheduled event that disrupts execution of program
W/R Control and Status Registers (CSR):

Control Flow:
Branch to another location
Conditionally branch to another location if a certain condition holds
Indirectly branch to another location
Call another block of code

45

Instruction Types: Program & Functions

Instructions and data can be stored in memory
as numbers
Numbers are easy to change
Procedure or Function:

Stored subroutine that performs task based on provided parameters

46

Stored-program
concept

Return Return control

Put Put result where calling program can access it

Perform Perform task

Acquire Acquire storage resources (x2 – stack pointer)

Transfer
Transfer control to procedure (x1: program counter 🡺instruction address
register)

Put
Put parameters in a place accessible by procedure (x5-x7, x28-x31) – 8
registers

RISC-V register convention
First step of Function/procedure: PUT parameters in registers
32 registers for data and special information

47

Second step: Transfer control to procedure 🡺 In x1, we store the address to return when
procedure/routine finishes

RISC-V Register Convention
Third step: Acquire resources to store data
X2 – Stack Pointer (sp)

Stack: Last-In-First-Out Queue (LIFO)
Stack pointer: value denoting the most recently allocated address in a stack that shows where
old register values can be found.

48

Frame pointer (fp or x8) points to 1ˢᵗ double word of frame
Stack pointer (sp) points to top of stack:

Adjusted to make room for all saved registers and memory-resident variables
Sp may vary during execution of program

49

RISC-V Register Convention - X8 – Frame Pointer
(fp)

RISC-V Register Convention

X3 – Global Pointer (gp)
C Storage classes: automatic and statics
Automatic variables are local to procedure and discarded at the end
Static variables exist across procedures
X3 register stores the global pointer (GP) of static data to simplify its access

50

Privileged levels and CSRs
Type of Privileged Instructions (System Instructions)

Read-modify-write Control and Status Registers (CSR)
Handle Exceptions/Interrupts

Exception: internal unscheduled event that disrupts execution of program
Interrupt: Exception with external cause

How Exceptions are handled in RISC-V?
1 🡺 Save the address of the instruction causing the exception and context (registers values)
2 🡺Transfer control to OS at some specified address
3 🡺 Terminate interrupted program or continue execution

Information about interrupts and other system options are stored in CSRs.
Examples:

epc – Address of instruction that took the interrupt (trap)
mcause – Machine cause register 🡺 code about the cause of interrupt
mip – Machine Interrupt Status 🡺 information on pending interrupts
mie – Machine Interrupt Enable 🡺 information on interrupt enable bits

51

CSR Listing and Mapping Convention

52

Up to 4096 CSR registers with 12 bits encoding (csr[11:0])
CSR[11:10] indicate if it is read/write or read-only
CSR[9:8] encode lowest privilege level that can Access CSR
In MEEP User Custom read/write for Systolic Arrays

Compressed Instructions Extension: “C”
Compressed instructions format

53

Opcode
2 LSBs of 32bit instructions always [11]
2 LSBs of 16bit instructions = [00], [01], [10]

Load (CL), Store (CS), Arithmetic (CA), Branch (CB), use the 8 most
common registers, x8 to x15 (3 bits encoding)

RISC-V Vector Programming Model

54

Vector instruction Set Advantages:
Compact: one short instruction encodes N operations
N operations are independent and can use the same functional unit
Access disjoint registers

Vector Extension Overview: Key terms

VL – Vector Length: Number of Elements 🡺 stored in CSR
SEW - Standard element width [8, 16, 32, 64,…] 🡺 max SEW = max [XLEN, FLEN]
VLEN – Register Vector Length in bits (implementation dependant)
LMUL – Number of vector registers in a group 🡺 stored in CSR

55

Example
VLEN = 128 bits
VL = 32 elements
SEW = 8 bits (1 byte)

LMUL = 2

Vector Extension Overview

Vector Length Specific ISA (VLS) vs Vector Length Agnostic (VLA)
VLS: Fixed register vector length
Wide vector registers 🡺 VLS code written for short vectors cannot make use of wider register 🡺
Inefficient
Medium-small vector registers 🡺 code written for wider VLS-ISA will not run
Solution: Agnosticism 🡺 design a variable length vector instruction set (Vector Length Agnostic)

RISC-V Vector Extension (VLA)
Adds 32 user vector registers of VLEN
Adds 5 CSR registers
Current Vector extension version 1.0 (RVV v1.0)

Vector Extension Overview

Vector layout:
Example of 8 elements vector, 16 bits SEW (128 bits vecto) length)

57

Vector masking:
Mask stored in vector register 0, v0
When mask enabled, operations only on masked elements
Example of vector mask: operations NOT to be perfomed on element 0th and 4th

Vector instruction Set Advantages:

Compact:
One short instruction encodes N operations

Expressive, tells hardware that these N operations are:
Independent
Can use the same functional unit
Access disjoint registers
Access registers in same pattern as previous operation
Access a contiguous block of memory (unit-strice load/store)
Access memory in a known pattern

Scalable
Can run same code on more parallel pipelines (lanes)

58

RISC-V Vector Lengths

Physical Vector Length: Size of the physical vector register file supported in the
VPU or SA
Virtual Vector Length: Maximum Vector length supported by system + vector
registers of scratchpad
Application (Real) Vector Length: length required by the application

Physical Vector length ≤ Virtual Vector length

59

Vector Extension Overview: Vector Instruction
Formats

60

[6:0] opcode: VL, VLS, VLX…

Vector operands:
vd: vector destination [5b]
vs: vector source [5b]

Scalar operands: rs, rd [5b]

vm: vector mask enabled
Mop and lumop: operation code

Vector Extension Overview: Vector Instruction

61

Instruction types
Configuration

Set vector length and element
width (SEW)

Vector Load
Load vectors FROM mem
Set address to load from
Set width
Set stride

Vector Store
Store vector TO mem

Vector Operations

RISC-V Instruction summary

62

RISCV Instructions are 32 bits (16bit compressed instructions supported)
Standard Instruction formats: R, I, S, SB, U, UJ (special formats for compressed instructions: CR, CS,
CI,…)

Key terms:
XLEN – current register length (32, 64 or 128) based on current register length (RV32I, RV64I, RV128I)
rs1, rs2 – source regisers
rd – destination register
X[0-31] – user registers; XLEN-1 wide
X0 = 0

RISC-V Instruction summary

63

Instruction types:
Arithmetic, Logical, Shift
Data transfer/memory
Flow: conditional branch, unconditional branch
System/Privilege

Instructions examples

64

https://riscv.org/wp-
content/uploads/2017/05/riscv-spec-
v2.2.pdf

RISC-V Instruction summary
RISCV Instruction Encoding Complete specification of RISC-V v2.2

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

Este proyecto con referencia REGAGE22e00058408992 está cofinanciado por el Ministerio para la Transformación Digital y de los Servicios Públicos, en el marco del
Fondo de Resiliencia y Recuperación – y la Unión Europea – NextGenerationEU. Los puntos de vista y las opiniones expresadas son únicamente los del autor o
autores y no reflejan necesariamente los de la Unión Europea. Ni la Unión Europea ni la Comisión Europea pueden ser consideradas responsables de las mismas.

